Sports Performance

What do the following sport teams have in common? They all use whole body vibration training to enhance their performance!

Tampa Bay Buccaneers Chicago
Kansas City Los Angeles Avengers
San Diego Padres Miami Dolphins
Dallas Mavericks San Diego Chargers
Tennessee Titans New York Mets
Pittsburgh Pirates St. Louis Cardinals
Anaheim Ducks New York Giants
Dallas Stars Toronto Blue Jays
Calgary Flames Oak land Raiders
Toronto Maple Leafs Philadelphia Flyers
Atlanta Braves Los Angeles Dodgers
Los Angeles Kings

Vibration training has become a valuable training tool for increasing performance. Not only do elite athletes use it to gain an edge on the competition, but also by everyday fitness enthusiasts in enhancing recovery and preventing injuries. Weekend warriors are benefiting from the incredible performance boosting effects of whole body vibration training.

Dramatic increases in coordination, strength, flexibility and speed all help to improve the athlete’s performance across all fields of sports activity. Even the brain is exercised through Whole Body Vibration which improves the athlete’s adaptive response to performance driven activities. Rapid adaptation to the stimulation from any challenging activity accelerates the learning curve and therefore the excellence in that particular sport.

Warm ups take on new meaning as high levels of neurons and muscle fibers are jump started within in seconds of using the device. Fast twitch muscle fibers are recruited leading to explosive strength, enhanced muscular endurance, and improved agility.

Rapid rehabilitation after injury is vital for professional athletes. Coaches and trainers can now marvel at how quickly players can return to play even after sustaining previously “game ending injuries”. The BODY VIBE is simple to use and requires short training sessions giving you more time to devote to your sport or activity.
………………………………………………………………………………………………………………………………………………

Scientific Evidence, Proven Results

HUMAN PERFORMANCE

New trends in training science: The use of vibrations for enhancing performance
C. Bosco, M. Cardinale, O. Tsarpele, E. Locatelli

“The use of vibrations in an athletic setting offers new possibilities to coaching science. Resistance training effectiveness has been demonstrated due to the possibility of enhancing neuromuscular performance, power output, strength and hormonal profile. However, the time needed for these adaptations to occur is relatively long as compared to the possibilities offered by vibration treatments. It should be recognized however, that vibrations need to be viewed not as a substitute tool of resistance exercise, but as a valid additional means to be implemented in a training routine in association with all the other traditional methodologies nowadays utilized. New studies need to be conducted to analyze chronic responses, different treatment protocols and the effects of the association of vibrations with conventional training means for improving the knowledge in the interesting and exciting tool of sports science.”

Acute physiological effects of exhaustive Whole Body Vibration exercise in men
J. Rittweger, G. Beller, D. Felsenberg

“In brief, vibration exercise is a new strategy in eliciting muscular contraction by reflexes. It therefore may allow the combination of voluntary and involuntary muscle work. The present investigation has shown that, even if performed to exhaustion, cardiovascular effects of vibration exercise are mild. In young, healthy subjects, heart rate rises from 130 min-1, which corresponds to 50% of maximal oxygen uptake. Blood lactate rose to about 3.5mm. Systolic blood pressure increased moderately up to 130mmHg, but the diastolic pressure dropped to almost 50 mmHg. All parameters returned to normal values within 15 min of recovery. In consequence, the risk expected when vibration exercise is applied in the elderly is negligible. Surprising findings of this study were the itching erythema and oedema of the skin over the activated muscles, which have to be investigated by further studies, as well as the mechanisms of fatigue, which seem to bear neuronal and muscular components.”

Adaptive responses of human skeletal muscle to vibration exposure
C. Bosco, R. Colli, E. Introini, M. Cardinale, O. Tsarpela, A. Madella, J. Tihanyi, A. Viru

“In the present study, no neurogenic potentiation has been demonstrated, as no EMG recordings were performed. Nevertheless, enhancement of the mechanical behavior strongly suggests that a neurogenic adaptation may have occurred in response to the vibration treatments. Therefore, even if the intrinsic mechanism contributed, the adaptive response of neuromuscular functions of VT could not be explained by it. The duration of the stimulus seems to be important. The adaptive response of human skeletal muscle to simulated hypergravity conditions (1.1 g), applied for 3 weeks, caused a drastic enhancement of the neuromuscular functions of the leg extensor muscles, shifting the F-V relationship to the right (Bosco, 1985). In the present experiment, even if the total length of the VT application period was only 10 min, the perturbation of the gravitational field was consistent (5.4 g). An equivalent length and intensity of training stimulus can be reached only by performing 150 leg press or half-squat exercises with extra loads of three times the body mass twice a week for 5 weeks (Bosco, 1992).”

Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles
C. Bosco, M. Cardinale, O. Tsarpela

“The improvement in muscle performance after VT has been quoted (Bosco et al. 1998) to be similar to that occurring after several weeks of heavy resistance training (e.g. Ikai and Fukunnaa 1970; Coyle et al. 1981; Hakkinen and Komi 1985). In fact, the improvement in muscle function after resistance training has been attributed to enhancement of neuromuscular behaviour caused by an increasing activity of higher motor centers (Milner-Brown et al. 1975) The improvement of muscle performance induced by VT would suggest that a neural adaptation had occurred in response to VT. In this connection, the duration of the stimulus would seem to be important.”

Acute and residual effects of vibratory stimulation on explosive strength in elite and amateur athletes
V.B Issurin, G. Tenenbaum

“The superimposed vibratory stimulation allowed a significant facilitation of an explosive strength exertion. This approach may be useful in identifying the hidden reserves of an athlete and in augmenting an acute effect of power training.”

Effect of four-month vertical Whole Body Vibration on performance and balance
S. Torvinen, P. Kannus, H. Sievanen, T.A.H. Jarvinen, M. Pasanen, S. Kontulainen, T. Jarvinen, M. Jarvinen, P. Oja, I. Vuori

“This randomized controlled study showed that a 4-month whole body vibration loading was safe to use and induced a significant 8.5% mean increase in the jump height of young healthy adults. This improvement was already seen after 2 months of the vibration. Lower limb extension strength was also enhanced by the 2-month vibration period. This increase however slowed down by the end of the intervention, and at 4 months the difference between the groups was no more statistically significant, mostly due to increased extension strength in the control group (learning effect). Concerning the dynamic and static body balance, the 4-month whole body vibration intervention showed no effect.”

The influence of Whole Body Vibration on the Mechanical Behaviour of Skeletal Muscle
C. Bosco, M. Cardinale, R. Colli, J. Tihanyi, S.P. von Duvillard, A. Viru

“Enhanced mechanical behaviour during 5 s CJ, strongly suggests that a neurogenic adaptation have occurred in response to the vibration treatments. Even if the intrinsic mechanism of the adaptive response of neuromuscular functions to WBV could not be explained, the effectiveness of the stimulus seems to have relevant importance.”

Strength gain following 12 weeks of Whole Body Vibration training
M. Roelants, C. Delecluse, S. Verschueren

“The sensory stimulation provoked by WBV, followed by an increased EMG-activity, has the potential to induce a significant strength gain in knee-extensors and this to the same extent as regular high resistance training. The strength gain following WBV-training in this study may not be considered as an acute effect as there was a 72 hour-delay between the post tests and the last training session. The changes in strength are clearly linked to the vibratory stimulus, as there is no effect in the placebo condition. Most likely the strength gain is mainly the result of specific neural adaptations resulting in a more efficient use of sensory information. Further investigations are needed to explore the underlying mechanisms of muscle activation and neuromuscular adaptations by means of WBV-training.”

Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise
Jo¨rn Rittweger, Marcus Mutschelknauss, and Dieter Felsenberg

“The observed total exercise time, the changes in blood lactate and the RPE values suggest that a comparable degree of exhaustion and muscular fatigue was reached more rapidly with vibration than without. This becomes plausible when considering that whole-body vibration increases the oxygen consumption when applied in addition to the squatting exercise (Rittweger et al., 2001). A substantial correlation was observed between the individual exercise times with or without vibration, indicating a contribution of the individual resistance to fatigue for both types of exercise.”

Influence of brief daily tendon vibration on rat soleus muscle in non-weight-bearing situation
M Falempin and Soumeya Fodili In-Albon

“A very rapid atrophy has been described in humans in space. After a 5-day flight, mean FCSAs were, respectively, 11 and 24% smaller in type I and II fibers (13). According to Edgerton et al. (13), these morphological changes are qualitatively similar to those observed in animals after real or simulated spaceflight conditions for short periods. The validity of extrapolating from unweighted muscles to humans in spaceflight is likely to prove qualitatively correct. Muscular vibration has been used to 1) study the contribution of muscle spindles to kinesthetic sensitiveness (35); 2) study the perceptions of position and velocity of an isometric limb (37); and 3) investigate how the central nervous system uses the muscle spindle information to coordinate movements (10). No systematic study of the effects of tendon vibration on the mechanical properties of atrophied muscles has been reported in the literature. Our results provide evidence for a therapeutic effect of tendon vibration on unloaded muscles. The data are even more convincing when we consider that 1) tendon vibration was applied for only 192 s in every 24-h period during the unloading time and 2) it was a noninvasive method to prevent any change in the spinal proprioceptive regulation by the muscle spindle reflex during spaceflight. Consequently, this countermeasure could be applied in humans during a mission.”

Strength Increase after Whole-Body Vibration Compared with Resistance Training
C. Delecluse, M. Roelants, and S. Verschueren

“In conclusion, this is the first study that demonstrates that the stimulation of propriospinal pathways provoked by WBV and the resulting increase in muscle activity have the potential to induce strength gain in the knee extensors of previously untrained subjects to the same extent as resistance training at moderate intensity. The findings of this study clearly indicate that strength increases after 12 wk of WBV training are not attributable to a placebo effect. The CMJ height increased significantly in the WBV group only. The results of this study suggest that strength increases recorded in the WBV group are mainly resulting from neural adaptations and can be ascribed to a more efficient use of sensory information in the production of force. It is clear that more research on WBV is needed to clarify the mechanisms of muscle contractions and strength gain.”

Effect of Whole Body Vibration on Muscular Performance, Balance, and Bone
Saila Torvinen

“In the study I and II, the short-term effects of a single, 4-min whoile body vibration bout on muscle performance and body balance of healthy young adults were evaluated. In the study I, tilting-type of vibration induced transient, moderate improvements in jump height, isometric extension strength of lower extremities, and body balance. EMG-recordings of muscle activity demonstrated initial muscle fatigue, especially in the calf area. In the study II, a vertically-vibrating vibration stimulus did not induce changes in the performance and blance tests, while EMG-measurements showed the vibration exposure activated the muscles particularly in the hip region”

  • The Benefits of WBV on jumping performance – C. Bosco – 1998
  • Controlled WBV inprove health related quality of life in elderly patients = O. Bruyere – 2003
  • Electromyography activity of Vastus Lateralis muscle during WBV of different frequencies – M. Cardinale – 2003
  • Short-term effects of WBV on maximal voluntary isometric knee extensor force and rate of force rise- C.J. de Ruiter- 2002
  • Human postural response to different frequency vibrations of lower leg muscles -A.Polonyova-2001
  • Suppressive mechanism of gastric motility by WBV-T.Ishitake-1999
  • Human responses to vibration therapy-M.Tylee-1996

……………………………………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………………………………………
Go To Top

Please click here for important information before ordering your BodyVibe Model